USN

erence

Marks)

Marks)

larks)

: and

izrks)

arks)

arks)

rks)

rics)

<2

ts)

ta)

\$3)

Third Semester B.E. Degree Examination, June / July 08 Signals and Systems

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions.

Abbreviations: FT → Fourier Transform.

DTFT →Discrete – time Fourier transform.

- iii) 1 a. Define the following : i) Time – invariance ii) Stability Causality (04 Marks) iv) Invertibility.
 - A discrete time system is characterized by the following input output relationship: Y(n) = x(n) + 3 u(n+1). Check the following properties: i) Stability ii) Causality Linearity iv) Time – invariance v) Memory. (08 Marks)
 - c. The energy in a real valued signal x(n) is defined by, $E = \sum_{n=-\infty}^{\infty} x^2(n)$. Suppose that x(n)

has an even part defined by $\left(\frac{1}{2}\right)^{|n|}$ and the total energy of the signal x(n) is 5J, find the energy in the odd part of the signal. (08 Marks)

2 a. Convolute the two discrete – time sequences given below :

$$x_1(n) \equiv \alpha^n u(n)$$

$$x_2(n) = \alpha^{-\alpha} u(-n)$$
. Take $|\alpha| < 1$.

(08 Marks)

- b. Prove the following properties of convolution sum : i) Associativity ii) Distrubutivity iii) Commutativity. (08 Marks)
- c. Find the frequency response of an LTI system whose impulse response is given below : $h(t) = -\delta(t+1) + \delta(t) - \delta(t-1).$ (04 Marks)
- a. Consider an LTI system characterized by h(n) = 2 u(n). 3
 - i) If the system is excited by an input, $x(n) = 2\delta(n) + 4\delta(n-1) + 4\delta(n-2)$, find the response of the system for n = 0, 1,6.
 - Find the stability and frequency response of the system.

(10 Marks)

Evaluate the step response of the following LTI systems.

i)
$$h(t) = e^{-|t|}$$
 ii) $h(t) = u(t+1) - u(t-1)$.

(10 Marks)

a. If x(n) \underline{DTFT} $X(e^{j\Omega})$ or $X(\Omega)$, show that $E = \sum_{n=-\infty}^{\infty} |x(n)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\Omega)|^2 d\Omega$

(06 Marks)

b. Find the DTFT of x(n) = u(n).

(07 Marks)

c. Find the inverse DTFT of $X(\Omega) = X(e^{j\Omega}) = \frac{1}{\left[1 - a e^{-j\Omega}\right]^2}$. (07 Marks) a. If x(t) FT X(jw) or X(w) and y(t) FT Y(jw) or Y(w), show that

$$Z(t) = x(t) * y(t) FT Z(w) = X(w) Y(w).$$

(07 Marks)

Find the FT of x(t) = Sgn(t). Also plot the magnitude and phase spectra.

(07 Marks)

Find the FT of the triangular pulse shown in fig.5(c).

(06 Marks)

State and prove low pass sampling theorem.

(10 Marks)

- b. Consider a continuous time LTI system described by the following differential equation: $\frac{dy(t)}{dt} + 2y(t) = x(t)$. Find the following:
 - i) Frequency response.
 - ii) Response of the system to an input $x(t) = e^{-t} u(t)$.
 - Find the step response.

(10 Marks)

- a. A causal discrete LTI system is described by $y(n) \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n)$. Find the frequency response and impulse response of the system. (07 Marks)
- State and prove final value theorem, using Z transform.

(07 Marks)

c. Find the inverse Z – transform of $X(z) = e^{\sqrt{z}}$. Take x(n) to be a causal sequence.

(06 Marks)

- a. Solve the difference equation, y(n) = y(n-1) y(n-2) + 2, $n \ge 0$. Take y(-2) = 1 and y(-1) = 2. (10 Marks)
- b. A causal discrete time LTI system is described by $y(n) \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n)$.
 - i) Find H(z)
 - ii) Find h(n)
 - iii) Find step response of the system.
 - iv) Find system stability
 - v) Find frequency response of the system.

(10 Marks)
